Preliminary communication

Some binuclear complexes of iron and cobalt with isocyanide ligands

M.J. BOYLAN, J. BELLERBY, JOSEPHINE NEWMAN and A.R. MANNING*

Department of Chemistry, University College, Belfield, Dublin 4 (Ireland)
(Received November 3rd, 1972)

SUMMARY

Whereas $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ and $\mathrm{RNC}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}$, and Cy$)$ react to give mixtures of $\left[(\mathrm{RNC})_{5} \mathrm{Co}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ and the covalent, carbonyl-bridged $\left[\left(\mathrm{RNC}_{m} \mathrm{CO}_{2}(\mathrm{CO})_{8-m}\right]\right.$ derivatives $(m=1-3),\left[\left(\pi \text {-dienyl) } \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}\right.$ give only $\left[(\pi \text {-dienyl })_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4-n}(\mathrm{CNR})_{n}\right]$ complexes (dienyl $=\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{MeC}_{5} \mathrm{H}_{4}$ and $\mathrm{C}_{9} \mathrm{H}_{7}$; $n=1-2$) that exist in solution as mixtures of cis- and trans-CO- and RNC-bridged tautomers with the μ-RNC species decreasing in importance as the bulk of \mathbf{R} increases.

We have reinvestigated the reaction of $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ with isocyanides, and have found that at room temperature a series of $\left[(\mathrm{RNC})_{m} \mathrm{CO}_{2}(\mathrm{CO})_{8-m}\right]$ complexes are formed as well as the previously reported $\left[(\mathrm{RNC})_{5} \mathrm{Co}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ salts ${ }^{1,2}(\mathrm{R}=\mathrm{Me}, \mathrm{Et}$, and Cy ; $m=1-3$). The covalent compounds contain terminal CO , bridging CO , and terminal RNC ligands (Table 1). $\mathrm{Co}_{4}(\mathrm{CO})_{12}$ gives a range of similar complexes as well as others which we have not identified, but with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Co}(\mathrm{CO})_{3}\right]_{2}$, only $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Co}(\mathrm{CNR})_{3}\right]\left[\mathrm{Co}(\mathrm{CO})_{4}\right]$ salts were obtained.

Isocyanides will replace one ${ }^{3-5}$, or two CO ligands of $\left[\left(\pi \text {-dienyl) } \mathrm{Fe}(\mathrm{CO})_{2}\right]_{2}\right.$ compounds. In solution, the $\left[(\pi \text {-dienyl })_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{4-n}(\mathrm{CNR})_{n}\right]$ derivatives (dienyl $=$ $\mathrm{C}_{5} \mathrm{H}_{5}, \mathrm{MeC}_{5} \mathrm{H}_{4}$, or $\mathrm{C}_{9} \mathrm{H}_{7} ; n=1$ or 2) exist as mixtures of tautomers in equilibria which depend on the solvent, temperature, and \mathbf{R} (Table 1). Increasing the bulk of R brings about a decrease in the importance of those isomers of the monosubstituted complexes which have a bridging RNC group as these would be destabilized by the increasing steric interaction of R with a ($\pi-\mathrm{C}_{5} \mathrm{H}_{5}$) $\mathrm{Fe}(\mathrm{CO})$ moiety. When the isocyanide is terminally coordinated, such an interaction is not possible. A similar effect appears to operate when $n=2$. In the case of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNBz})\right]$, it is probably the electronic
TABLE 1
INFRARED SPECTRA OF SOME COBALT AND IRON COMPLEXES WITH ISOCYANIDE LIGANDS IN HEXANE SOLUTION

Compound ${ }^{\text {b }}$	Absorption bands ${ }^{\text {a }}$								
$(\mathrm{CyNC}) \mathrm{CO}_{2}(\mathrm{CO})_{7}$	1835(10)	1842(9.3)	1876(0.7)	1996(8.3)	2014(14.7)	2028(31.0)	2064(7.0)	2067(7.0)	2156(4,2, br) ${ }^{\text {c }}$
$(\mathrm{CyNC})_{2} \mathrm{CO}_{2}(\mathrm{CO})_{6}$	1822(9.3)	1830(10)	1863(0.5)	1982(9.3)	2002(16.8)	2012(23.0)	2041(6.2)		2143(8.3, br) ${ }^{\text {c }}$
$(\mathrm{CyNC})_{3} \mathrm{CO}_{3}(\mathrm{CO})_{3}$	1810(10)	1817(9.8)		1967(10)	1975(10.7)	1991(11.5)	1997(13.6)	2018(5.8)	2129(12.0, br) ${ }^{\text {c }}$
$\left\{(\mathrm{CyNC})_{5} \mathrm{Co}\right\}\left\{\mathrm{CO}(\mathrm{CO})_{4}\right\}$					1889(8.0)		2122(7.7) ${ }^{\text {c }}$	2153(10) ${ }^{\text {c }}$	$2179(5.6)^{c}$
$\left(\pi-\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNB2})$	$1720(12.0){ }^{\text {d }}$		1772(10)	$1803(19.5)^{d}$		1953(33.2)	1999(37.4) ${ }^{\text {d }}$		2119(1.1, br) ${ }^{\text {c }}$
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNMC})$	1737(5.9) ${ }^{\text {d }}$		1774(10)	$1802(4.7)^{\text {d }}$		1953(14.8)	1999(11.3) ${ }^{\text {d }}$		2134(2.7, br) ${ }^{\text {c }}$
$\left(\pi-\mathrm{C}_{3} \mathrm{H}_{3}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNEt})$	1741(2.0) ${ }^{\text {d }}$		1773(10)	$1799(3.1){ }^{\text {d }}$		1953(11.3)	1998(7,2) ${ }^{d}$		$2127(2.7, \mathrm{br})^{c}$
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNBu}-\mathrm{i})$	1731(1.4) ${ }^{\text {d }}$		1775(10)	$1798(2.1)^{\text {d }}$		1953(8.7)	$1997(4.3){ }^{\text {d }}$		2122(1.9, br) ${ }^{\text {c }}$
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNCy})$	$1740(0.5){ }^{\text {d }}$		1772(10)	1801(1.0) ${ }^{\text {d }}$		1952(6.3)	1996(1.7) ${ }^{\text {d }}$		$2112(1.6, \mathrm{br}){ }^{\text {c }}$
$\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNBLrt})$			1771(10)	1796(sh)		1952(6.8)		2072(1.0) ${ }^{\text {c }}$	2108(1.7, br) c
$\left(\pi-\mathrm{C}_{5} \mathrm{H}_{6}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mathrm{CNMe})_{2}$	$1720(21.4){ }^{\text {d }}$ d			$1784(10)^{d}$	1944(15.3)	$1953(13.2)^{a}$	$1990(29.0)^{e}$		$2127(4.4, \mathrm{br}){ }^{c}, \mathrm{~d}$
$\left(\pi-\mathrm{C}_{3} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{2}(\mathrm{CNCy})_{2}$	$1697(10.1){ }^{d, e}$			1783(10) ${ }^{\text {d }}$	1941(13.4)	1951(7.1) ${ }^{e}$	1987(4.7) ${ }^{e}$		$2111(5.2, \mathrm{br})^{c, d}$

${ }^{a}$ Peak positions $\left(\mathrm{cm}^{-1}\right)$ with relative peak heights in parentheses. ${ }^{b} \mathrm{Cy}=$ cyclohexyl, $\mathrm{i} \mathrm{Bu}=$ isobutyl, t - $\mathrm{Bu}=$ tert-butyland $\mathrm{Bz}=$ benzyl. ${ }^{c}$ Due to terminal $\nu(\mathrm{CN})$ vibrations;
$b r=$ broad. ${ }^{d}$ Due solely or in past to species containing one bridging isocyanide ligand. ${ }^{e}$ Due solely or in part to species containing two bridging isocyanide ligands.
effects of the benzyl group which cause the μ-RNC species to be so important. The shapes of the absorption bands due to the terminal and bridging $\nu(\mathrm{CN})$ vibrations of the monosubstituted complexes are consistent with cis and trans forms of both the terminal and bridged isocyanide species. In the spectrum of $\left[\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3}(\mathrm{CNBu}-\mathrm{t})\right]$, the terminal $\nu(\mathrm{CN})$ absorption band may be resolved into its two components.

REFERENCES

1 A. Sacco, Gazz. Chim. Ital, 83 (1953) 632.
2 W. Hieber and J. Sedlmeier, Chem. Ber., 87 (1954) 789.
3 Y. Yamamoto and N. Hagihara, Mem. Inst. Sci and Ind. Res, Osaka Univ., 27 (1970) 109
4 P.M. Treichel, J.J. Benedict, R.W. Hess and J.P. Stenson, Chem. Commur, (1970) 1627.
5 W.J. Jetz and R.J. Angelici, J. Organometal Chem, 35 (1972) C37.

