Preliminary communication

Some binuclear complexes of iron and cobalt with isocyanide ligands

M.J. BOYLAN, J. BELLERBY, JOSEPHINE NEWMAN and A.R. MANNING* Department of Chemistry, University College, Belfield, Dublin 4 (Ireland) (Received November 3rd, 1972)

SUMMARY

Whereas $Co_2(CO)_8$ and RNC (R = Me, Et, and Cy) react to give mixtures of $[(RNC)_5Co] [Co(CO)_4]$ and the covalent, carbonyl-bridged $[(RNC)_mCo_2(CO)_{8-m}]$ derivatives (m = 1-3), $[(\pi-dienyl)Fe(CO)_2]_2$ give only $[(\pi-dienyl)_2Fe_2(CO)_{4-n}(CNR)_n]$ complexes (dienyl = C_5H_5 , MeC₅H₄ and C_9H_7 ; n = 1-2) that exist in solution as mixtures of *cis*- and *trans*-CO- and RNC-bridged tautomers with the μ -RNC species decreasing in importance as the bulk of R increases.

We have reinvestigated the reaction of $Co_2(CO)_8$ with isocyanides, and have found that at room temperature a series of $[(RNC)_m Co_2(CO)_{8-m}]$ complexes are formed as well as the previously reported $[(RNC)_5 Co] [Co(CO)_4]$ salts^{1,2} (R = Me, Et, and Cy; m = 1-3). The covalent compounds contain terminal CO, bridging CO, and terminal RNC ligands (Table 1). $Co_4(CO)_{12}$ gives a range of similar complexes as well as others which we have not identified, but with $[(Ph_3P)Co(CO)_3]_2$, only $[(Ph_3P)_2Co(CNR)_3] [Co(CO)_4]$ salts were obtained.

Isocyanides will replace one ${}^{3-5}$, or two CO ligands of $[(\pi\text{-dienyl})\text{Fe}(\text{CO})_2]_2$ compounds. In solution, the $[(\pi\text{-dienyl})_2 \text{Fe}_2(\text{CO})_{4-n}(\text{CNR})_n]$ derivatives (dienyl = C_5H_5 , MeC₅H₄, or C_9H_7 ; n = 1 or 2) exist as mixtures of tautomers in equilibria which depend on the solvent, temperature, and R (Table 1). Increasing the bulk of R brings about a decrease in the importance of those isomers of the monosubstituted complexes which have a bridging RNC group as these would be destabilized by the increasing steric interaction of R with a $(\pi\text{-}C_5H_5)\text{Fe}(\text{CO})$ moiety. When the isocyanide is terminally coordinated, such an interaction is not possible. A similar effect appears to operate when n = 2. In the case of $[(\pi\text{-}C_5H_5)_2\text{Fe}_2(\text{CO})_3(\text{CNBz})]$, it is probably the electronic

	S IN HEXANE	
	INFRARED SPECTRA OF SOME COBALT AND IKON COMPLEXES WITH ISOCYANIDE LIGANDS IN HEXANE	
	CES WITH ISOCY	
	T AND IRON COMPLEXES	
	E COBALT AND	
	TRA OF SOME CO	
	NFRARED SPEC	
	Z	

TABLE 1

SOLUTION

Compound b	No. of the second s			والمراجع	Absorption bands ^a	bands a			
(CyNC)Co ₂ (CO),	1835(10)	1842(9.3)	1876(0.7)	1996(8.3)	2014(14.7)	2028(31.0)	2064(7.0)	2067(7.0)	2156(4.2, br) ^c
(CyNC), Co, (CO),	1822(9.3)	1830(10)	1863(0.5)	1982(9.3)	2002(16.8)	2012(23.0)	2041(6.2)		2143(8.3, hr) ^c
(CyNC), Co, (CO),	1810(10)	1817(9.8)	•	1967(10)	1975(10.7)	1991(11.5)	1997(13.6)	2018(5.8)	2129(12.0, br) ^c
{(CyNC), Coj {Co(CO),}		•		•	1889(8.0)		2122(7.7) ^c	2153(10) ^c	2179(5.6) ^c
(π-C ₆ H ₅) ₂ Fe ₂ (CO) ₃ (CNB2)	$1720(12.0)^{d}$		1772(10)	1803(19.5) ^d		1953(33.2)	1999(37.4) ^d		2119(1.1, br) ^c
(π-C ₃ H ₅) ₃ Fe ₂ (CO) ₃ (CNMc)			1774(10)	1802(4,7) ^d		1953(14.8)	1999(11.3) ^d		2134(2.7, br) ^c
$(\pi - C_s H_s)_3 Fe_2 (CO)_3 (CNEt)$	-		1773(10)	$1799(3.1)^{d}$		1953(11.3)	1998(7.2) ^d		2127(2.7, br) ^c
$(\pi$ -C ₅ H ₆), Fe ₂ (CO), (CNBu-i)			1775(10)	1798(2.1) ^d	•	1953(8.7)	1997(4.3) ^d		2122(1.9, br) ^c
(π-C ₃ H ₅), Fe ₂ (CO), (CNCy)	$1740(0.5)^{d}$		1772(10)	1801(1.0) d		1952(6.3)	1996(1.7) ^d		2112(1.6, br) ^c
(π-C ₅ H ₅), Fe ₂ (CO), (CNB(I-t)			1771(10)	1796(sh)		1952(6.8)		2072(1.0) ^c	
(<i>π</i> -C ₅ H ₆), Fe ₂ (CO), (CNMe),	1720(21.4) ^{d,e}		•	1784(10) ^d	1944(15.3)	1953(13.2) ⁴	1990(29.0) ^e		
(m-C, H,), Fe, (CO), (CNCy),	1697(10.1) d,e			1783(10) ^d	1941(13.4)	1951(7.1) ^e	1987(4.7) ^e		2111 (5.2, br) ^{c,d}
^{<i>a</i>} Peak positions (cm ⁻¹) with relative peak heights in parentheses. ^{<i>b</i>} Cy = cyclohexyl, i-Bu = isobutyl, t-Bu = tert-butyl and Bz = benzyl. ^{<i>c</i>} Due to terminal ν (CN) vibrations; br = broad, ^{<i>d</i>} Due solely or in past to species containing one bridging isocyanide ligand. ^{<i>e</i>} Due solely or in part to species containing two bridging isocyanide ligands.	lative peak heights ast to species conta	in parenthes ining one brid	ss. ^b Cy = cyc dging isocyani	lohexyl, i-Bu = is ide ligand, ^e Due	obutyl, t-Bu = solely or in pa	tert-butyl and B. rt to species cont	z = benzyl. ^c Due taining two bridg	to terminal $\nu($	CN) vibrations; ligands.

effects of the benzyl group which cause the μ -RNC species to be so important. The shapes of the absorption bands due to the terminal and bridging $\nu(CN)$ vibrations of the monosubstituted complexes are consistent with *cis* and *trans* forms of both the terminal and bridged isocyanide species. In the spectrum of $[(\pi - C_5H_5)_2 Fe_2(CO)_3(CNBu-t)]$, the terminal $\nu(CN)$ absorption band may be resolved into its two components.

REFERENCES

- 1 A. Sacco, Gazz. Chim. Ital., 83 (1953) 632.
- 2 W. Hieber and J. SedImeier, Chem. Ber., 87 (1954) 789.
- 3 Y. Yamamoto and N. Hagihara, Mem. Inst. Sci. and Ind. Res., Osaka Univ., 27 (1970) 109
- 4 P.M. Treichel, J.J. Benedict, R.W. Hess and J.P. Stenson, Chem. Commun., (1970) 1627.
- 5 W.J. Jetz and R.J. Angelici, J. Organometal. Chem., 35 (1972) C37.